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September 8, 2021 MAT 5190, Hanan Ather

These are course notes for MAT 5190.

§1 September 8, 2021

§1.1 Fields and σ-Fields

Definition 1.1 A class (set) of subsets of S is said to be a field, and is denoted by
F , if

(i) F is a non-empty class.

(ii) A ∈ F implies that Ac ∈ F (closed under complementations)

(iii) A1, A2,∈ F implies that A1 ∪ A2 ∈ F (that is, F us closed under pairwise
unions).

Note that there are two key consequences of the definition of a field:

1. S, ∅ ∈ F

2. If AjF , j = 1, 2, .., n, then,
⋃k
j=1Aj ∈ F ,

⋂k
j=1Aj ∈ F for any finite n.

Definition 1.2 (Sigma algebra) A collection of subsets of S is called a sigma algebra
( or Borel field), denoted by B, if it satisfies the following three properties:

(a) ∅ ∈ B (the empty set is an element).

(b) If A ∈ B, then Ac ∈ B (closed under complement)

(c) If A1, A2, ... ∈ B, then, ∪∞i=1Ai ∈ B (closed under countable unions).

Many different sigma algebras can be associated with a sample space S, the collection
{∅, S} is the trivial sigma algebra. The only sigma algebra that we will be concerned
with is smallest one that contains all open sets in a given sample space.

§1.2 Basics Concepts of Probability Theory

Definition 1.3 (Probability Function) Given a sample space S and a sigma algebra B,
a probability function is a function P with domain B that satisfies

1. P(A) ≥ 0 for all A ∈ B

2. P(S) = 1

3. If A1, A2, ... ∈ B are pairwise disjoint, then P(∪∞i=1Ai) =
∑∞

i=1 P(Ai)

§1.3 Conditional Probability and Independence

Definition 1.4 (Conditional Probability) If A and B are events in S, and P(B) ≥ 0,
then the conditional probability of A given B is

P(A|B) =
P(A ∩B)

P(B)

4



5

Note that in the calculation of conditional probability the event B becomes the sample
space. The intuition is that our original sample space S has been updated to B. All
further occurrences are then calibrated with respect to their relation with B.

Theorem 1.5 (Bayes’ Rule) — A1, A2, ... be a partition of the sample space, and
let B be any set. The for each i = 1, 2, ...

P(Ai|B) =
P(B|Ai)P(Ai)∑∞
j=1 P(B|Aj)P(Aj)

Definition 1.6 (Independent, Mutually independent) Two events A and B are statis-
tically independent if

P(A ∩B) = P(A)P(B)

A collection of events A1, ..., An are mutually independent if for any subcollection
Ai1, ...Aik, we have

P

 k⋃
j=1

Aij

 =

k∏
j=1

P(Aij)

§1.4 Random Variables

Given a probability space (S,F ,P), the main objective of probability theory is that of
calculating probabilities of events which may be of importance to us. The sample space
S may be quite an abstract set, thus we can faciliate our calculations by a transformation
of the sample space S, into a subset of the real line R. This is achieved by a random
variable 1 which is a function from sample space S into R. With every random variable
X we associate a function called the cumulative distribution function of X.

Definition 1.7 (cdf, pmf, pdf) The cumulative distribution function (cdf) of a
random variable X, denoted by FX(x), is defined by

FX(x) = PX(X ≤ x), for all x.

The probability mass function (pmf) of a discrete random variable X is given by

fX(x) = PX(X = x) for all x.

The probability density function (pdf), fX(x) of a continuous random variable
is X is the function that satisfies

FX(x) =

∫ x

−∞
fX(t)dt for all x

Fact 1.1 (Valid CDFs). Any CDF F has the following properties:

• Right-continuous: that is, for any a, we have

F (a) = lim
x→a+

F (x)

1A random variable is a real-valued function with a domain Ω which as an extra property called
measurability.
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• Convergence to 0 or 1 in the limits:

lim
x→−∞

F (x) = 0 lim
x→∞

F (x) = 1

§1.5 Transformation of expectations

Theorem 1.8 — Let X have a cdf FX(x), let Y = g(X), and let X and Y be
respective sample spaces.

(a) if g is an increasing function ion X , FY (y) = FX(g−1(y)) for y ∈ Y.

(b) if g is a decreasing function on X and X is continuous random variable, FY (y) =
1− FX(g−1(y))

Theorem 1.9 — Let X have a pdf fX(x) and let Y = g(X), g is monotone function.
Let X and Y be the respective sample spaces. Suppose fX(x) is continuous on X
and that g−1(y) has continuous derivative on Y. Then the pdf of Y is given by

FY (y) =

{
FX(g−1(y)

∣∣∣ ddyg−1(y)
∣∣∣ if y ∈ Y

0 otherwise

Theorem 1.10 (Probability integral transformation) — Let X have a continuous
cdf FX(x) and define the random variable Y as Y = FX(X). Then Y is uniformly
distributed on (0, 1), that is, P(Y ≤ y) = y, 0 < y < 1.

§2 September 13, 2021

§2.1 Product Probability Spaces

If we consider experiments E1 and E2 with respective probability spaces (S1,F1,P1) and
(S2,F2,P2), then (E1, E2) = E1 × E2 has the sample space S = S1 × S2. The appropriate
σ-field F of events in S is defined by first defining the class C:

C = {F1 ×F2 : F1 ∈ F1, F2 ∈ F2}

where, F1 ×F2 = {(s1, s2) : s1 ∈ A1, s2 ∈ A2}

§2.2 Discrete Distributions

Discrete uniform distribution. We consider an urn with N balls, numbered 1, ..., N .
Let X be the number of the randomly select ball from the urn. We have

P(X = x|N) =
1

N
, x = 1, ..., N.

We say that X is discrete uniform distribution and we write X ∼ Discrete Uniform(1, N).

We can prove that E(X) = N+1
2 and V(X) = (N+1)(N−1)

12 . More generally, we have X ∼
Discrete Uniform(N0, N1) if

P(X = x|N) =
1

N1 −N0 + 1
, x = N0, ..., N1.
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Hypergeometric distribution. Consider an urn which contains N balls: M red and
N −M green. Select a sample size of K. Let X be a random variable which gives the
total number of red balls in this sample. We say that X has a hypergeometric distribution
and we wrtie X ∼ Hypergeometric(N,M,K).

P(X = x|N,M,K) =

(
M
x

)(
N−M
K−x

)(
N
K

) , x = 0, ...K;M − (N −K) ≤ x ≤M

Poisson distribution. Let λ be the average number of events which occur in a fixed
interval of time and X be the random number of events which occur in the same interval.
We have

P(X = X|λ) = e−λ
λx

x!
, x = 0, 1, 2...

Negative Binomial distribution. Consider a sequence of identical Bernoulli trials
with probability p of success. Let X be the number of trials required to get fixed number
r successes. A combinatorial argument shows that

P(X = x|r, p) =

(
x− 1

r − 1

)
pr(1− p)x−r, x = r, r + 1, ...

§3 September 15, 2021

§3.1 Continuous Distributions

A random variable X has a continuous distribution if its cdf is continuous. Today’s
lecture covered some of the most commonly used continuous distributions.

Uniform Distribution. This is a continuous distribution with pdf:

f(x|a, b) =
1

b− a
, a ≤ x ≤ b, where ,−∞ < a < b <∞

Gamma Distribution. This is a continuous distribution with pdf:

f(x|α, β) =
1

Γ(α)βα
xα−1e−x/β, , 0 < x <∞.

where 0 < α, β < ∞ and Γ(α) =
∫∞

0 xα−1e−xdx is the gamma function. We write
X ∼Gamma(α, β). Note that

Γ(α+ 1) = αΓ(α), Γ(1) = 1, Γ

(
1

2

)
=
√
π

Beta Distribution. This is a continuous distribution with pdf:

f(x|α, β) =
1

B(α, β)
xα−1(1− x)β−1, 0 < x < 1,where 0 < α, β <∞.

Note that B(α, β) =
∫ 1

0 x
α−1(1− x)β−1dx is the beta function. We write X ∼Beta(α, β).

We have

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)

7



September 20, 2021 MAT 5190, Hanan Ather

Cauchy Distribution. This is a continuous distribution with the pdf:

f(x|θ) =
1

π
· 1

1 + (x− θ)2
, −∞ < x <∞

Where −∞ < θ <∞. This is a “pathological” example, since EX =∞.
Lognormal Distribution. This is a continuous distribution with the following pdf:

f(x|µ, σ2) =
1√
2πσ

· 1

x
exp

{
−(logx− µ)2

2σ

}
, 0 < x <∞

where −∞ < µ <∞, 0 < σ <∞. We write X ∼ Lognormal(µ, σ2).
Double Exponential Distribution. This is a continuous distribution with pdf:

f(x|µ, σ) =
1

2σ
exp

{
−|x− µ|

σ
, −∞ < x <∞

}
Where −∞ < µ∞, 0 < σ < ∞. We write X ∼Double Exponential(µ, σ). Its pretty
straight forward to check that

EX = µ, V(X) = 2σ2.

§4 September 20, 2021

§4.1 Exponential Family

A family of pdf’s (or pmf’s) is called exponential family if it can be written in the form

f(x|θ) = h(x)c(θ)exp

{
k∑
i=1

ti(x)wi(θ)

}
(1)

where h(x) ≥ 0, c(θ) ≥ 0, wi(θ) ∈ R, ti(x) ∈ R. Here the parameter θ = θ1, ..., θd is
vector-valued. If d = k, the family is called a full exponential family. If d < k, the family
is called a curved exponential family.

Binomial family with n known:

f(x|p) =

(
n

x

)
px(1− p)n

(
p

1− p

)x
=

(
n

x

)
(1− p)nexp

{
xlog

(
p

1− p

)}

= h(x)c(θ)exp

{
k∑
i=1

ti(x)wi(θ)

}
Poisson Family:

f(x|λ) =
e−λλx

x!
=

1

x!
eλexp{xlogλ} = h(x)c(θ)exp

{
k∑
i=1

ti(x)wi(θ)

}
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Theorem 4.1 — If X is a random variable whose probability density function is
given by 1 then

E

(
k∑
i=1

=
∂wi(θ)

∂θj
ti(X)

)
= − ∂

∂j
logc(θ)

Var

(
k∑
i=1

∂wi(θ)

∂θj
ti(X)

)
= − ∂2

∂θj
logc(θ)− E

(
k∑
i=1

=
∂wi(θ)

∂2θj
ti(X)

)
= − ∂2

∂θ2
j

logc(θ)

§4.2 Natural Parameterization

If we use ηi = wi(θ) in formula (1) and η = (η1, ..., ηk), we obtain the natural parametriza-
tion:

f(x|η) = h(x)c∗(η)exp

{
k∑
i=1

ti(x)ηi

}
(2)

where h(x) and ti(x) are the same as in formula (2). The natural space is H = {η :∫∞
−∞ exp{

∑k
i=1 ti(x)ηi}. We have

c∗(η) =
1∫∞

−∞ exp{
∑k

i=1 ti(x)ηi}
, η ∈ H

Normal Family. The natural parametrization if η1 = 1/σ2, η2 = µ/σ2 with natural
parameter space H = {(η1, η2) : 0 < η1 < ∞,−∞ < η2 < ∞}. We have µ = η2/η1 and
σ2 = 1/η1 and hence the normal pdf

f(x|µ, σ) =
1√
2πσ

exp

{
− µ2

2σ2

}
exp

{
− x2

2σ2
+
xµ

σ2

}
can be written as,

f(x|η1, η2) =

√
η1√
2π

exp

{
− η2

2

2η1

}
exp

{
−η1x

2

2
+ η2x

}

= f(x|η) = h(x)c∗(η)exp

{
k∑
i=1

ti(x)ηi

}

§5 September 22, 2021

§5.1 Location and Scale Families

In this lecture we discussed three techniques for constructing families of distributions.
Each of these technique relies on first specifying a single pdf, f(z), called the standard
pdf for the family. The other pdf’s in the family are generated by applying a certain
transformation to the standard pdf.

9
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Theorem 5.1 — Let f(z) be any odf and µ and σ > 0 be arbitrary constants. Then
the following function is also a pdf:

g(x|µ, σ) =
1

σ
f

(
x− µ
σ

)

The family {f(x − µ) : −∞ < µ < ∞} is called a location family with a standard pdf
f(z). The location parameter µ shifts the graph f(z) with µ, with out changing its shape.

Representation: Let Z be a random variable with pdf f(z) and X = µ+ Z. Then the
pdf of X is g(x|µ). If Fz(z) and Fx(x) are cdf’s of Z, respectively X, then

FX(x) = Fz(x− µ).

Uniform location family. By taking f(z) be a uniform U(a, b) pdf, we generate the
following location family:

g(x|µ) =
1

b− a
, a+ µ < x < b+ µ

Exponential location family. By taking f(z) to be Exponential(β) pdf (β is a fixed
value), we generate the following location family

g(x|µ) =
1

β
e−(x−µ)/β, µ < x <∞

§5.2 Scale Families

The family {(1/σ)f(x/σ) : 0 < σ <∞} is called a scale family with standard pdf f(z).

A scale parameter σ > 1 stretches the graph with pdf f(z) without changing its basic
shape. Similarly a scale parameter σ < 1 contracts the graph of f(z).

Representation: Let Z be a random variable with f(z) and X = σZ. Then the
pdf of X is g(x|σ) = (1/σ)f(x/σ). If FZ(z) and Fx(x) are the cdf’s of Z and X,
respectively, then

FX(x) = FZ

(x
σ

)
.

Gamma Scale Family. By taking f(z) be the pdf of Gamma(α, 1), (where α is
fixed), we generate the following scale family

g(x|σ) =
1

Γ(α)σα
xα−1e−x/σ, 0 < x <∞

Double Exponential. By taking f(z) as the pdf of Double Exponential(0,σ), we
generate the following scale family

g(x|σ) =
1

2σ
e−|x|σ, −∞ < x <∞

10
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§5.3 Location-scale families

The following family of distributions {(1/σ)f(x− µ)/σ) : −∞ < µ <∞, 0 < σ <∞ } is
called location-scale family with standard pdf f(z).

Let Z be a random variable with pdf f(z) and X = µ + σZ. Then pdf of random
variable X is given by (1/σ)f(x− µ)/σ). If FZ(z) and FX(x) are the cdf’s of Z are the
cdf’s of Z and X, respectively, then

FX(x) = FZ

(
x− µ
σ

)
Therefore, clearly we have

EX = µ+ σEZ, VarX = σ2VarZ

Generally, the standard pdf f(z) is chosen in such a way that EZ = 0 and VarZ = 1,
this results in EX = µ and VarX = σ.

§6 September 27, 2021

In this section we are going to consider events that co-occur, and revisit concepts such as
independence and conditional probability. We will learn how to handle random variables
that co-occur.

§6.1 Discrete Joint and Marginal Distributions

Definition 6.1 (Joint PMF) Let (X,Y ) be a bi-variate random vector. We day that
the distribution of (X,Y ) is discrete if the possible values of (X,Y ) are countable.
In this case the function,

f(x, y) = fX,Y (x, y) = P(X = x, Y = y)

is called the joint pmf of X,Y .

What is the most important information about a random variable? The PMF, or the
PDF. The multivariate analogue to the Joint function, which takes in a value of two
or more random variables, and returns the probability that those two variables jointly
take on those values.

P(X = x, Y = y) Joint Probability of X and Y

Should be read a: “Probability X takes on the value x and Y takes on the value y”.

A joint probability table is a way of specifying the ”joint” probability distribution
between multiple random variables. It does to by keeping a multi-dimensional lookup
table, so essentially any assignment of the random variables, P(X = x, Y = y, ...) can
be directly looked up. A probability mass table is a brute force way to store the joint
probabilities of random variables.

11
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Property 1. If A is a subset of R2

P((X,Y ) ∈ A) =
∑

(x,y)∈A

P(X = x, Y = y)

Property 2. If g(x, y) is a real-valued function, then

Eg(X,Y ) =
∑
x,y

g(x, y)f(x, y)

Definition 6.2 (Marginal pmf) Let f(x, y) be the joint PMF of the discrete random
vector (X,Y ), the PMF of X is called the marginal pmf of X, denoted by fX(x).
Similarly, the PMF of Y is called the marginal PMF of Y , denoted by fY (y).

The marginals can be computed by the following formulas:

fX(x) =
∑
y∈R

fX,Y (x, y), fY (y) =
∑
x∈R

fX,Y (x, y)

§6.2 Continuous Joint and Marginal Distributions

Definition 6.3 Let (X,Y ) be a bivariate random vector. We say the distribution
of (X,Y ) is continuous if the joint CDF of (X,Y ) is defined by F (u, v) = P(X ≤
u, Y ≤ v) is continuous. In this case the function f(x, y) which satisfies the condition

F (u, v) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)dxdy

is called the joint pdf of (X,Y ).
Note that ∫ ∞

−∞

∫ ∞
−∞

f(x, y)dxdy = 1, f(x, y) ≥ 0 for all x, y

Property 1. If A is a subset of R2

P((X,Y ) ∈ A) =

∫
A

∫
f(x, y)dxdy

Property 2. If g(x, y) is a real-valued function, then

Eg(X,Y ) =

∫
A

∫
g(x, y)f(x, y)dxdy

The marginals can be computed by the following formulas:

fX(x) =

∫ ∞
−∞

fX,Y (x, y)dy, fY (y) =

∫ ∞
−∞

fX,Y (x, y)dx

§6.3 Multinomial

The multi-nomial distribution is a parametric distribution for multiple random vari-
ables.

12
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§7 September 29, 2021

§7.1 Conditional Distributions (Discrete)

Let (X,Y ) be discrete bivariate random vector with joint pmf f(x, y) and marginal pmf’s
fX(x) and fY (y). For all fixed x ∈ X = {x : fX(x) > 0}, we define

f(y|x) =
f(x, y)

fX(x)

The function y 7→ f(y|x) is called conditional pmf of Y given X = x. For every x ∈ X ,
the function y 7→ f(y|x) is a pmf, since

f(y|x) ≥ 0 for all y, and
∑
y

f(y|x) = 1.

Property 1. For every fixed x ∈ X and for every set A

P(Y ∈ A|X = x) =
∑
y∈A

f(y|x).

The function y 7→ F (y|x) := P(Y ≤ y|X = x) is called the conditional cdf of Y given
that X = x.
Property 2. For every fixed x ∈ X and for every real-valued function g

E(g(Y )|X = x) =
∑
y

g(y)f(y|x).

§7.2 Conditional Distributions (Continuous)

Let (X,Y ) be continuous random vector with joint pdf f(x, y) and marginal pdf’s fX(x)
and fY (y). For all fixed x ∈ X = {x : fX(x) > 0}, we define

f(y|x) =
f(x, y)

fX(x)

The function y 7→ f(y|x) is called conditional pdf of Y given X = x. For every x ∈ X ,
the function y 7→ f(y|x) is a pdf, since

f(y|x) ≥ 0 for all y, and

∫ ∞
−∞

f(y|x) = 1.

Note that in the continuous case f(y|x) 6= P(Y = y|X = x)!

Notation 1. For any fixed x ∈ X and for every set A

P(Y ∈ A|X = x)) =

∫
A
f(y|x)dy

The function y 7→ F (y|x) := P(Y ≤ y|X = x) is called the conditional cdf of Y given
that X = x.
Notation 2. For every fixed x ∈ X and for every real-valued function g

E(g(Y )|X = x) =

∫ ∞
−∞

g(y)f(y|x)dy.

13
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§7.3 Independence

From the definition of conditional pmf we can derive the joint pdf (or pmf) of (X,Y ) as

fX,Y (x, y) = fX(x)fY |X(y|x).

Definition 7.1 (Independent R.V’s) Let (X,Y ) be a random vector with joit pdf or
pmf fX,Y (x, y), and marginal pdf’s or pmf’s fX(x) and fY (y). If

fX,Y (x, y) = fX(x)fY (y), for all x, y ∈ R

and we say that X and Y are independent.

Lemma 7.2 — Let (X,Y ) be a bi-variate vector with joint pdf or pmf f(x, y).
The variables X and Y are independent if and only if there exists some function
g(x), h(x) such that

f(x, y) = g(x)h(y), x ∈ R, y ∈ R.

Note that function g(x), h(y) “coincide” with marginal pdf’s fX(x) and fY (y) up to a
constant, i.e, there exists some positive constants C1, C2 with C1 × C2 = 1 such that

g(x) = C1fX(x), h(y) = C2fY (y).

Theorem 7.3 — If X and Y are independent, then for any function ϕ(x), ψ(x)

E[ϕ(X)ψ(Y )] = E[ϕ(X)]E[ψ(Y )]

and,
MX+Y (t) = MX(t)MY (t).

§8 October 4, 2021

§8.1 Bivariate Transformations

In this lecture our focus will be on computing the pdf of a bivariate random vector (U, V )
defined by

U = g1(X,Y ), V = g2(X,Y )

where (X,Y ) is a random vector with a known joint pdf f(x, y) and g1, g2 are defined
functions.

14
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Theorem 8.1 — Let (X,Y ) be a bivariate random vector with joint pdf fX,Y (x, y)
and A = {(x, y) : fX,Y (x, y) > 0}. Let g = (g1, g2) : A → B be a one-to-one
transformation. Denote g−1 := h = (h1, h2) and let J be the Jacobian of the
transformation

J =

[
∂h1
∂u

∂h1
∂v

∂h2
∂u

∂h2
∂v

]
Then the joint pdf of (U, V ) is

fU,V (u, v) = fX,Y (h1(u, v), h2(u, v)) · |J |, (u, v) ∈ B.

If the transformation g is not one-to-one on A, but we can find a partition A1,A2, ...,Ak
such thart g = g(i) : Ai → Bi is one-to-one for each i = 1, ..., k, then we can still write
down a formula for the joint pdf of (U, V ) = g(X,Y ):

fU,V (u, v) =

j∑
i=1

fX,Y (h
(i)
1 (u, v), h

(i)
2 (u, v)) · |Ji|I(u,v)∈Bi

where h(i) = (h
(i)
1 , h

(i)
2 ) are the inverse of g(i) and Ji is the corresponding Jacobian.

§9 October 6, 2021

§9.1 Hierarchical Models

Thus far we have seen random variables which have single distributions, possibly depending
on parameters. However, we can think of the parameter of a distribution as being a
random variable, which itself has a distribution.

Example 9.1 (Binomial-Poisson hierarchy) — Classic example of hierarchical
model is the following: An insect lays a large number of eggs, each surviving with
probability p. On average, how many eggs will survive? The “large number” of eggs
laid is a random variable, often taken to be Poisson(λ). Furthermore, if we assume
that each eggs survival is independent, we have Bernoulli trials. Therefore if X =
number of survivors and Y = number of eggs laid, we have

X|Y ∼ binomial(Y, p)

Y ∼ Poisson(λ),

a hierarchical model.

15
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Solution:
The random variable of interest, X = number of survivors, has the distribution given by

P(X = x) =

∞∑
y=0

P(X = x, Y = y)

=
∞∑
y=0

P(X = x|Y = y)P(Y = y)

=
∞∑
y=x

[(
y

x

)
px(1− p)y−x

] [
e−λλ

y

y!

]
... (after some algebraic simplifications)

=
(λp)xe−λ

x!
e(1−p)λ

Thus, X ∼Poission(λp). Thus, any marginal inference on X is with respect to a
Poisson(λp) distribution, with Y playing no part at all. Introduction Y in the hierarchy
was mainly to aid our understanding the model.
Now we can easily compute the expected value

E[X] = λp

so, on average, λp eggs will survive.

Sometimes calculations can be greatly simplified using the following theorem. Recall that
E(X|y) is a function of y and E(X|Y ) is a random variable whose distribution depends
on the value of Y .

Theorem 9.2 — If X and Y are random variable, then

E(X) = EE(X|Y )

and,
Var(X) = Var(E(X|Y )) + E(Var(X|Y ))

Proof. By definition

E(X|Y ) =
∑
x

xP(X = x|Y = y)︸ ︷︷ ︸
Average of X when we fix Y = y

.

But Y is a random variable, so if average over all realizations of Y , we have,

EY (EX(X|Y )) =
∑
y

∑
x

xP(X = x|Y = y)︸ ︷︷ ︸
E(X|Y )

·P(Y = y)

by the definition of joint density, we can re-write the equation,

=⇒
∑
y

∑
x

xP(x, y) =
∑
x

∑
y

xP(x, y) =
∑
x

x
∑
y

P(x, y)︸ ︷︷ ︸
P(X=x)

=
∑
x

xP(X = x) = E(X).

16
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§10 October 13, 2021

§10.1 Covariance and Correlation

Definition 10.1 (Covariance and Correlation) Let X and Y be random variables such
that EX2 <∞, EY 2 <∞. The covariance of X and Y is defined by

Cov(X,Y ) = E [(X − EX)(Y − EY )]

The correlation is defined as

ρX,Y := Corr(X,Y ) =
Cov(X,Y )√

Var(X)Var(Y )

If X and Y are independent random variables, then Cov(X,Y) = 0. The converse is
not true in general. However, the converse is true if (X,Y ) are bivariate normal
distribution.
Furthermore, if X and Y are random variables and a and b are constants, then

Var(aX, bY ) = a2Var(X) + b2Var(Y ) + 2abCov(X,Y ).

Consequence: If X and Y are positively correlated(i.e, Cov(X,Y ) ≥ 0), then

Var(X + Y ) ≥ Var(X) + Var(Y )

Note: A special case of positive dependence structure “association”. We say that X
and Y are weakly associated if

Cov(g(X), h(Y )) ≥ 0

for any non-decreasing functions g, h for which covariance exists.

§10.2 Inequalities

The inequalities below, although often stated in terms of expectation, rely mainly on
properties of numbers. They are all based on the following simple lemma.

Lemma 10.2 — Let a and b be any positive numbers, and let p and q any positive
numbers (greater than 1) stratifying

1

p
+

1

q
= 1

Then,
1

p
ap +

1

q
bq ≥ ab

with equality of ap = bq.

Proof. Fix, b and consider the function

g(a) =
1

p
ap +

1

q
bq − ab

17
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To minimize g(a), we differentiate and set equal to 0:

d

da
g(a) = 0 =⇒ ap−1 − b = 0 =⇒ a = ap−1

We can also check the second derivative to establish that this is indeed a minimum. The
value of the function at the minimum is 0.

Theorem 10.3 (Holder’s Inequality) — Let X and Y be any two random variables,
and let p and q satisfy. Then

|EXY | ≤ E|XY | ≤ (E|X|p)1/pE|Y |q)1/q

Proof. The first inequality follows from the fact that −|XY | ≤ XY ≤ |XY | and theorem
2.2.5 in the textbook. To prove second inequality, define,

a =
|X|

(E|X|p)1/p
and b =

|Y |
(E|Y |q)1/q

Applying the lemma above, and take the expectation of both side. The expectation of
left-hand side is 1 and rearranging gives us the second inequality.

Perhaps the most famous special case of Holder’s Inequality is the Cauchy-Schwartz
(p = 2).

Theorem 10.4 (Cauchy-Schwartz Inequality) — For any two random variables X
and Y ,

|EXY | ≤ E|XY | ≤ (E|X|2)1/2(E|Y |2)1/2

§11 October 18, 2021

§11.1 Multivariate Distributions

The random vector X = (X1, . . . , Xn) has a sample space in Rn. If (X1, . . . , Xn) is
discrete random vector (the sample space is countable), then the joint pmf of (X1, . . . , Xn)
is the function define by f(x) = f(x1, . . . , xn) = P(X1 = x1, . . . , Xn = xn) for each
(x1, . . . , xn). Then for any A ∈ Rn,

P(X ∈ A) =
∑
x∈A

f(x)

If (X1, . . . , Xn) is continuous random vector, the joint pdf of (X1, . . . , Xn) is a function
f(x1, . . . , xn) that satisfies

P(x) =

∫
· · ·
∫
A
f(x)dx =

∫
· · ·
∫
A
f(x1 . . . xn)dx1 . . . dxn

These are n− fold integrals with limits of integration set so that the integration is over
all points of x ∈ A.

Marginal pdf or pmf of any subset of of of the coordinates of (X1, . . . , Xn) can

18
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be computed by integrating or summing the joint pdf or pmf over all possible values of
the other coordinates.

f(x1, ..., xk) =

∫
Rn−k

f(x1, ..., xn)dxk+1...dxn =

∫ ∞
−∞
· · ·
∫ ∞
−∞

f(x1, ..., xn)dxk+1...dxn

or in the discrete case

f(x1, ..., xk) =
∑

xk+1,...,xn∈Rn−k

f(x1, ..., xn),

for every (x1, . . . , xn) ∈ Rn .

§12 October 20, 2021

§12.1 Basic Concepts of Random Samples

Definition 12.1 (Random sample) The random variables X1, ..., Xn are called a ran-
dom sample of size n from population f(x) if X1, ..., Xn are mutually independent
random variables and the marginal pdf or pmf of each Xi is the same function f(x)

The joint pdf of the random sample is given by

f(x1, . . . , xn) = f(x1) · · · f(xn) =

n∏
i=1

f(xi)

The joint pdf can be used to calculate the probabilities involving samples. If the population
pdf is a member of the parametric family with a pdf or pmf given by f(x|θ), then the
joint pdf or pmf is

f(x1, . . . , xn|θ) = f(x1|θ) · · · f(xn|θ) =
n∏
i=1

f(xi|θ)

Definition 12.2 Let X1, ..., Xn be a random sample and T (x1, ..., xn) be real vector
valued function, whose domain includes the sample space of X1, ..., Xn. The random
variable (or vector) Y = T (X1, ..., Xn) is called a statistic.

The definition of a statistics is very broad, with only one restriction being that a
statistic cannot be a function of the parameter. The following three statistics are used to
provide sample summaries for data :

1. X̄ = X1+···+Xn
n , the sample mean.

2. S2 = 1
n−1

∑n
i=1(Xi − X̄)2, the sample variance

3. S2 =
√
S2, standard deviation.

The next result is useful for studying sampling distributions.

19
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Lemma 12.3 — Let X1, ..., Xn be a random sample from a population and let
g(x) be a function such that Eg(X1) and Var[g(X1)] exist. Then

E

(
n∑
i=1

g(Xi)

)
= n(Eg(X1))

and

Var

(
n∑
i=1

g(Xi)

)
= n(Varg(X1))

Proof. Details of the proof are in lecture notes and textbook.

Let X2, ...Xn be a random sampel from a population with mean µ and variance σ2 <∞.
Then

1. EX̄ = µ

2. VarX̄ = σ2

n

3. ES2 = σ2

Theorem 12.4 — Let X1, ..., Xn be a random sample from a population with a
mgf Mx(t). Then the mgf of X̄ is given by

MX̄(t) =

[
MX(

t

n
)n
]

If the mgf does not exists or doesn’t have a closed form, we can use the following result
to derive the distribution of X̄.

Theorem 12.5 — Let X and Y be independent continuous random variables with
pdf’s fX(x) and fY (y). Then the pdf of U = X + Y is given by

fU (u) =

∫ ∞
−∞

fX(x)fY (u− x)dx =

∫ ∞
−∞

fX(u− y)fY (y)dy

§13 November 3, 2021

§13.1 Sampling from Normal Distribution

Fact 13.1. Let X1, ..., Xn be a random sample from N(µ, σ2) population, X̄ be the
sample mean and S2 be the sample variance. Then,

1. X̄ and S2 are independent random variables

2. X̄ ∼ Normal(µ, σ2/n)

3. (n− 1)S2/σ2 ∼ χ2
n−1

20
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Recall that if a random vector (X,Y ) has a normal distribution, then

X,Y are independent ⇐⇒ Cov(X,Y ) = 0

We can actually generalize this idea to linear combinations of normal random variables.
Let X1, ..., Xn be random variables such that Xi ∼ N(µi, σ

2
i ) for each i = 1, ..n. Define

the random vector U = (U1, ..., Uk) and V = (V1, ..., Vr) where

Ui =
n∑
j=1

aijXj , i = 1, ..., k; Vr =
n∑
j=1

brjXj , r = 1, ...,m

and aij , brj are constants. Then,

Ui ∼ N

 n∑
j=1

aijµi,

n∑
j=1

a2
ijσ

2
i

 , Vr ∼ N

 n∑
j=1

brjµi,

n∑
j=1

b2rjσ
2
i

 , Cov(Ui, Vr) =

n∑
j=1

aijbrjσ
2
j

and,
Ui, Vr are independent ⇐⇒ Cov(Ui, Vr) = 0

And this also implies that

U ,V are independent random vectors ⇐⇒ Ui, Vr are independent ∀i,∀r.

Application: If X1, ..., Xn is a random sample from N(µ, σ2) population,

Xj − X̄ and X̄ are independent

for every j = 1, ..., n. From here we conclude that S2 and X̄ are independent.

§13.2 The Derived Distributions: Student’s t and Snedecor’s F

Definition 13.1 (Student’s t distribution) We say that a random variable T has
Student’s t distribution with p degrees of freedom (and we write T ∼ tp) if its
pdf is given by

f(t) =
Γ(p+ 1)/2

Γ(p/2)
· 1

(1 + t2/p)(p+ 1)/2
, −∞ < t <∞.

Properties of the t distribution

1. t1 = Cauchy(0, 1)

2. the graph of student’s t distribution is bell-shaped and symmetric around 0.

3. We have ET = 0, VarT = p
p−2 if p > 2.

Let U and V be random variables such that U ∼ Normal(0,1) and V ∼ χ2
p. Then

T :=
U√
V/p

∼ tp.

Application. Let X1, ..., Xn be a random sample from Normal(µ, σ2) population. Then

T :=
X̄ − µ
S/
√
n
∼ tn−1.

T is used to make inferences about µ, when σ2 is unknown.
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Definition 13.2 (Snedecor’s F distribution) We say that a continuous random variable
F has a Snedecor’s F distribution with p and q degrees of freedom (and we write
F ∼ Fp,q) if its pdf is given by

f(x) =
Γ((p+ q)/2)

Γ(p/2)Γ(q/2)
·
(
p

q

)p/2
· x(p/2)−1

[1 + (p/q)x](p+q)/2)
, 0 < x <∞.

Let U and V be independent random variables such that U ∼ χ2
p and V ∼ χ2

q . Then

F :=
U/p

V/p
∼ Fp,q.

Application. Let X = (X1, ..., Xn) be a random sample from Normal(µX , σ
2
X) and

Y = (Y1, ..., Yn) be a random sample from a Normal(µY , σ
2
Y ). Suppose that X and Y

are independent. Then,

F :=
S2
X/σ

2

S2
Y /σ

2
Y

∼ Fm−1,n−1

F is used to make inferences about the ratio of σ2
X/σ

2
Y

§14 November 8, 2021

§14.1 Order Statistics

We will consider a transformation that takes n RV’s X1, ..., Xn and essentially returns
them in a sorted order.

Definition 14.1 The order statistics of random variables X1, ..., Xn are the random
variables X(1), ...X(n), where

X1 = min(X(1), ...X(n))

X2 = is the second-smallest of X1, ..., Xn

...

Xn−1 = is the second-largest of X1, ..., Xn

Xn = max(X(1), ...X(n)).

The sample range is a statistic defined as R = X(n) −X(1). The midrange statistic is
defined as V = (X(1) +X(n))/2. The sample median is defined by

M =

{
Xn+1

2
if n if odd

1
2(Xn

2
+Xn

2
+1) if n if odd

Its important to note that order statistics X(1), ...X(n) are random variables, and each X(i)

is a function of the random sample X1, ..., Xn. Even if the original sample is independent,
the order statistics are dependent!
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Theorem 14.2 — Let X1, ..., Xn be a random sample from discrete distribution
with pmf f(x). Suppose that the sample space of X1 is a set {x1, ..., xn} such that
x1 < x2 < ... with CDF F (x). Then the CDF of the jth order statistic X(j) is.

P(X(j) ≤ x) =

n∑
k=j

(
x

n

)
F (x)k(1− F (x))n−k

The pdf of the jth order statistic X(j) is given by

f(Xj(x)) =
n!

(j − 1)!(n− 1)!
f(x)[F (x)]j−1[1− F (x)]n−1

Let X(1), ..., X(n) denote the order statistics of a random sample, X1, ..., Xn, from con-
tinuous population with cdf FX(x) and pdf fX(x). Then the joint pdf of X(i) and X(j),
1 ≤ i < j ≤ n, is

fX(i),X(j)
(u, v) =

n!

(i− 1)!(j − 1− i)!(n− j)!
fX(u)fX(v)[FX(u)]i−1

×[FX(u)− FX(u)]j−1−i[1− FX(v)]n−j

§15 November 10, 2021

§15.1 Convergence Concepts

The notion of letting sample size approach infinity can provide us with useful approxima-
tions, since it usually happens that expressions become simplified in the limit.

§15.2 Convergence in Probability

Definition 15.1 (Convergence in probability) A sequence of random variables, X1, X2, ...
converges in probability to a random variable X if, for every ε > 0,

lim
n→∞

P(|Xn −X| ≥ ε) = 0 or equivalently, lim
n→∞

P(|Xn −X| < ε) = 1

The law of large number asserts that as n grows, the sample mean X̄n converges to true
mean µ. Law of larger number has two versions (weak and strong), the difference in the
two lies in what is mean for a sequence of random variables to converge to a number.

Theorem 15.2 (Weak Law of Large numbers) — Let X1, X2, ... be iid random
variables with EXi = µ and VarXi = σ2 <∞. Define, X̄n = 1

n

∑n
i=1Xi. Then, for

every ε > 0,
lim
n→∞

P(|X̄n − µ| < ε) = 1,

that is, X̄n converges in probability to µ.

We can extend the definition of convergence in probability to functions of random variables.
Suppose that X1, X2, ... converges in probability to a random variable X or to a constant
a and h is a continuous function. Then h(X1), h(X2), ... converges in probability to h(X).
We can use the above fact to easily prove that since S2

n → σ2 =⇒ Sn =
√
Sn → σ.
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Properties of convergence in probability:

1. if Xn
p−→ X and Xn

p−→ Y , then X = Y asymptotically.

2. if Xn
p−→ X and if Yn

p−→ Y , then if Xn + Yn
p−→ X + Y .

3. If Xn
p−→ X, Xn

p−→ X, and g(x, y) is a continuous function, then g(Xn, Yn)
p−→

g(X,Y ).

§15.3 Almost Sure Convergence and Strong Law of Large Numbers

Almost sure convergence is stronger than convergence in probability. It is similar to point
wise convergence of a sequence of functions.

Definition 15.3 (Almost surely convergence) A sequence of random variables, X1, X2, ...
converges almost surely to a random variable X if, for every ε > 0,

P( lim
n→∞

|Xn −X| < ε) = 1.

Lets try to understand this definition a bit deeper. A random-variable is just a real-valued
function defined on a sample space S. Let s ∈ S, then Xn(s) and X(s) are all functions
defined on S. The definition is saying that Xn converges to X almost surely if the
functions Xn(s) converges to X(s).

Note: Almost surely convergence implies convergence in probability, however converse is
not true. We say that the sequence of {θ̂n}n is a strongly consistent estimators for the
parameter θ if θ̂n

a.s−−→ θ.

Theorem 15.4 (The Strong Law of Large Numbers) — Let {X̄n}n be a sequence of
iid random variables. Suppose that E|X1| ≤ ∞ and EX1 = µ. Then

X̄n
a.s−−→ µ

In other words, sample mean X̄n converges to the true mean µ pointwise as n→∞.

The law of large number plays a crucial role in simulations and statistics. Lets say
we generate data from a large number of i.i.d samples of an experiment, either using
a computer simulation or relation world. If we employ proportion of times an event
occurred to approximate the probability of the event, we are implicitly applying the Law
of Large Numbers.

§15.4 Convergence in Distribution and Central Limit Theorem
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Definition 15.5 (Convergence in Distribution) We say that {Xn}n≥1 = {X1, X2, ...}
of random variables converges in distribution to a random variable X if

FXn(x) = P(Xn ≤ x)
n→∞−−−→ P(X ≤ x) = FX(x) for all x ∈ R

such that FX is continuous.
We say that sequence θ̂n≥1 of estimators of θ is asymptotically normal for θ if

√
n(θn − θ)

d−→ Z ∼ N(0, σ2) for some σ2 > 0.

Lets try to connect the ideas from previous sections to above definition. The law of large
numbers essentially says that if we have X1, X2, X2, ... i.i.d with mean µ and variance
σ2, X̄n → µ as n→∞ with probability 1. But what is the distribution of X̄n along the
way to becoming a constant? This is where the Central Limit Theorem (CLT) comes
into play.

Theorem 15.6 (Central Limit Theorem) — Let {Xn}n≥1 = {X1, X2, ...} of random
variables, assume that EXi = µ is finite and Var(Xi) = σ2 <∞. Then

√
n(X̄n − µ)

d−→ Z ∼ N(0, σ2)

If Xn
d−→ X and Xn

d−→ a, then

Xn + Yn
d−→ X + a and XnYn

d−→ Xa

We say that {Xn}n≥1 is a sequence of asymptotically normal estimators of µ.

Delta Method. Let {θ̂n}n be a sequence of asymptotically normal estimators
of θ. Recall that asymptotically normal means that random variables satisfies√
n(Yn − θ)→ n(9, σ) in distribution. For a given function g and specific value of θ,

suppose that g′(θ) exists and is not 0. Then

√
n[g(Yn)− g(θ)]→ n(0, σ2[g′(θ)]2) in distribution.

§16 November 15, 2021

§16.1 Inference

Our objective is now to use the information in the sample X1, ..., Xn to make inferences
about the unknown parameter.

For j = 1, ..m, let Tj be measurable functions defined on Rn → R and not depend-
ing on θ, and let T = (T1, ..., Tm)′. Then

T (X1, ..., Xn) = (T1(X1, ..., Xn), ..., Tm(X1, ...Xn))′

is called a m-dimensional statistic. Any statistic T(X) defines a form of data reduction
by partitioning the sample space X . If we only use the value of the statistic, T(x), rather
than the entire sample x, the two samples x and y will be treated equally if T(x) = T(y)
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§16.2 Sufficiency Principle

Definition 16.1 Let X = (X1, ..., Xn) be a random sample with a join pdf or pmf
denoted by f(x|θ). Let T = T(x) be a statistic based on this sample with pdf (or
pmf) denoted by fT (t|θ). We say that T is a sufficient statistic for θ if for any
t such that fT (t|θ) > 0, the conditional pdf (or pmf) of X given T = t does not
depend on θ.

Remark. The joint pdf (or pmf) of (X, T ) is

fX,T (x, t|θ) =

{
f(x|θ) if t = T (x)

0 otherwise

Theorem 16.2 (Factorization Theorem) — Let X = (X1, ..., Xn) be a random
sample with a join pdf or pmf denoted by f(x|θ). Let

T = T (X1, ..., Xn) = (T1(X1, ..., Xn), ..., Tk(X1, ...Xn))′

be a k−dimensional statistic. Then T is a sufficient statistic for θ if and only if

f(x|θ) = g(T |θ) · h(x) for all x ∈ X .

§17 November 17, 2021

§17.1 Factorization Theorem Continued

Example 17.1 — Let X1, ..., Xn be independent random variables such that

Xk ∼ Unif(k(θ − 1), k(θ + 1)).

Show that

(
min

1≤k≤n

xk
k
, max

1≤k≤n

xk
k

)
is a 2−dimensional sufficient statistic.

Theorem 17.2 — Let X = (X1, ..., Xn) be a random sample from a pdf(or pmf)
which belongs to the following exponential family

fX(x|θ) = h(x)c(θ)exp

{
k∑
i=1

wi(θ)ti(x)

}

with θ = (θ1, ..., θd). Suppose that d ≤ k. Define

Ti = Ti(X) =
n∑
j=1

Ti(Xj) ∀i = 1, ..., k.

Then T = (T1, ..., Tk) is a sufficient statistic for θ.
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Proof. The joint pdf of X is:

f(x|θ) =
n∏
j=1

fxj (xjθ) =
n∏
j=1

[
h(xj)c(θ)

{
k∑
i=1

wi(θ)ti(xj)

}]

=
n∏
j=1

h(xj)[c(θ)]
nexp

{
k∑
i=1

wi(θ)ti(xj)

}

Clearly,
n∏
j=1

h(xj)︸ ︷︷ ︸
h′(x)

[c(θ)]nexp

{
k∑
i=1

wi(θ)ti(xj)

}
︸ ︷︷ ︸

g(T1(x),...,Tk(x)|θ)

Thus, by the Factorization theorem (T1(x), ..., Tk(x)|θ) is a sufficient statistic for θ.

Remark: If T is a sufficient statistic for θ, then any one-to-one transformation of
S = π(T ) is also a sufficient statistic for for θ, ∀π one-to-one maps. Therefore, a
sufficient statistic is not unique.

Definition 17.3 A sufficient statistic is T = (T1, ..., Tk) is called a minimal suffi-
cient statistic for θ if, for any other sufficient statistic T ∗ = (T ∗1 , ..., T

∗
k ), there

exists a function φ such that T = φ(T ∗). This is equivalent to saying that

T ∗(x) = T ∗(y) =⇒ T (x) = T (y)

Note: A minimal sufficient statistic may NOT be unique.

Theorem 17.4 (Lehman and Scheffe) — Let X = (X1, ..., Xn) be a random sample
from a pdf(or pmf) which belongs to the following exponential family fX(x|θ). Let
T = T (X) be a statistic which satisfies the following condition

f(x|θ)
f(y|θ)

does not depend on θ ⇐⇒ T (x) = T (y)

Then T is a minimal sufficient statistic.

Proof. Proof is given in the text book.

§18 November 22, 2021

§18.1 The Sufficiency Principle (Continued)

So far, we have covered sufficient statistics which in a sense contain all the information
about θ that is available in the sample. Next we look at a statistic which is quite the
opposite.

Definition 18.1 (Ancillary Statistic) A statistic S(X) whose distribution does not
depend on the parameter θ is called an ancillary statistic.

An ancillary statistic contains no information about θ! An ancillary statistic has a fixed
and known distribution that is unrelated to θ.
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Example 18.2 (Location and Scale family ancillary statistic) — Let X1, ..., Xn

be iid observations from a location parameter family with pdf g(x|µ) = f(x − µ)
where f is a standard pdf. Then we will show that{

R = X(n) −N(1) is ancillary statistic for µ.

S2 = 1
n−1

∑n
i=1(Xi − X̄)2 is ancillary statistic for µ.

In addition to that if we have random sample X = (X1, ..., Xn) from a scale family
with pdf g(x|θ) = 1

σf(x/σ), where f(z) is the standard pdf of the family. Then

T (X) =

(
X1

Xn
, ...,

Xn−1

Xn

)
is an ancillary statistic for σ

In particular X̄/Xn is an ancillary statistic for σ.

Proof.

Definition 18.3 (Complete statistic) Let f(t|θ) be a family of pdf or omfs for a statistic
T (X). The family of probability distributions is called complete if Eθ(T ) = 0 for all
θ implies that Pθ(g(T ) = 0) = 1 for all θ. Equivalently, T (X) is called a complete
statistic.
In other words, let T be the statistic whose range is T , it is called complete if

Eg(T ) = 0 for all θ =⇒ g(t) = 0 for all t ∈ T

Theorem 18.4 (Basu’s Theorem) — If T (X) is a complete ad minimal sufficient
statistic, the T (X) is independent of every ancillary statistic.

Proof. The proof for the discrete case is given on page 287 of the textbook, review it!

Theorem 18.5 (Complete Statistics in the exponential families) — LetX = (X1, ..., Xn)
be iid observations from an exponential family with pdf or pmf of the form

f(x|θ) = h(x)c(θ)exp

 k∑
j=1

w(θj)tj(x),


where θ = (θ1, ..., θk). Then the statistic

T (X) =

(
n∑
i=1

t1(Xi),

n∑
i=1

t2(Xi), ...,

n∑
i=1

tk(Xi),

)

is complete as long as the parameter space Θ contains an open set in Rk.

Proof. Proof is omitted from this course.

§18.2 Likelihood Principle
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Definition 18.6 (Likelihood function) Let f(x|θ) denote the joint pdf or pmf of the
sample X = (X1, ..., Xn). Then, given that X = x is observed, the function of θ
defined by

L(θ|x) = f(x|θ)

is called the likelihood function.

Likelihood Principle: If x and y are two sample points such that L(θ|x) ∝ L(θ|y),
i.e, ∃C(x,y) constant such that

L(θ|x) = C(x,y)L(θ|y) for all θ,

then the conclusions drawn from x and y should be identical. We define an experiment
E to be a triple (X, θ, {f(x|θ)}), wher X is a random vector with pmf f(x|θ) for some
θ ∈ Θ. An experimenter knowing what experiment E was performed hand having
observed a particular X = x, will make some inference or draw soem conclusion about θ.
We denote this conclusion by Ev(E,x), which stands for evidence about θ arising from
E and x.
Formal sufficiency Principle: Consider experiment E = (X, θ, {f(x|θ)}) and suppose
that is T (X) a sufficient statistic for θ. If x and y are two samples such that T (x) = T (y)
then

Ev(E,x) = Ev(E,y)

Formal Likelihood Principle: Suppose that we have two experiments, E1 = (X1, θ, {f(x1|θ)})
and E2 = (X2, θ, {f(x2|θ)}), where we have the unknown parameter θ is the same for
both experiments. If x is a sample from E1 and y is a sample from E2 such that

L(θ|x) = C(x,y)L(θ|y) for all θ,

then,

Ev(E1,x) = Ev(E2,y)

§19 November 24, 2021

§19.1 Equivariance Principle

Equivariance Principle: If Y = g(X) is a change of measurement scale such that the
model for Y has the same formal structure as the model for X, then inference procedure
should be both measurement equivariant and formally equivariant.

Definition 19.1 (Group transformation) A set G of functions, {g(x : g ∈ G)}, of the
form g : X → X is called a group transformation of X if

(i) (Inverse) ∀g ∈ G, ∃g−1 ∈ G such that g ◦ g−1 = e, where e : X → X is the
identity e(x) = x.

(ii) (Composition) For every g, g
′ ∈ G, g ◦ g′ ∈ G

(iii) (Identity) The identity, e(x) is an element of G.
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Definition 19.2 (Invariant) Let F = {f(x|θ) : θ ∈ Θ} be a set of pdf or pmfs for X,
and let G be a group of transformations of the sample space X . Then F is invariant
under the group G if for every θ ∈ Θ and g ∈ G there exists a unique θ

′ ∈ Θ such
that Y = g(X) has the distribution f(y|θ′) if X has the distribution f(x|θ).

The equivariance principle essentially says that inference based on X should be the same
as inference based on Y .

Example 19.3 (Location family is invariant) —

Example 19.4 (Scale family is invariant) —

§19.2 Methods for finding estimators

A statistic is a function of the random sample, and we generally use such functions to
approximate the value of the unknown parameter θ, which is underlying the parameter
for the underlying distribution of the sample) called estimator. Once we have observed
a particular realization of X, (the sample x), we refer to the value T (x) of the estimator
for that particular realization as estimate for θ.
We will study 3 methods for constructing estimator: method of moments, maximum
likelihood estimation, and Bayes method.

§19.3 Methods of Moments

Let X1, ..., Xn be a sample from a population with pdf or pmf f(x|θ1, ..., θk). Method of
moment estimators are found by equating the first k sample moments to corresponding
k population moments.

m1 =
1

n

n∑
i=1

X1
i , µ1(θ) = EX1 =

∫ ∞
−∞

xf(x|θ)dx

m2 =
1

n

n∑
i=1

X2
i , µ2(θ) = EX2 =

∫ ∞
−∞

x2f(x|θ)dx

...

mk =
1

n

n∑
i=1

Xk
i , µk(θ) = EXk =

∫ ∞
−∞

xkf(x|θ)dx

The method of moment estimator (θ̂1, .., θ̂k) of (θ1, ..., θk) is the solution of the full system
of k equations:

1

n

n∑
i=1

X1
i = µ1(θ)

1

n

n∑
i=1

X2
i = µ2(θ)

...

1

n

n∑
i=1

Xk
i = µk(θ)

30



31

Remark:
∑n

i=1(Xi − X̄)2 =
∑n

i=1X
2
1 + µX̄2 − 2X̄

∑n
i=1Xi =

∑n
i=1X

2
i − nX̄2

=⇒
n∑
i=1

X2
i =

n∑
i=1

(Xi − X̄)2 + nX̄2

§19.4 Maximum Likelihood Estimators

The method of maximum likelihood is by far the most popular technique for deriving esti-
mators. For each observed sample x = (x1, ..., xn), we define the maximum likelihood
estimate as the point θ̂ = θ̂(x) where the function θ 7→ L(θ|x) attains its maximum,
i,e.:

max
θ∈Θ

L(θ|x) = L(θ̂|x)

For each sample point x, and θ̂(x) is the parameter value at which (θ̂|x) attains its
maximum as a function of θ, with x held fixed. A maximum likelihood estimator (MLE)
of the parameter θ based on sample X is θ̂(X).

To find the MLE, in most cases we will be solving the equation

d

dθ
L(θ|x) = 0

and checking that
d2

dθ2
L(θ|x) |θ=θ̂< 0

§20 November 29, 2021

§20.1 Invariance property of MLE

Suppose that the distribution is index by the parameter θ, if are interested in estimating
some function of θ, say τ(θ). If we let η = τ(θ), then the inverse function θ = τ−1(η) is
well-defined, and we can express the likelihood function as a function of η

L∗(η|x)
n∏
i=1

f(xi|τ−1(η)) = L(τ−1(η)|x)

and,

sup
η
L∗(η|x) = sup

η
L(τ−1(η)|x) = sup

η
L(θ|x)

The induced likelihood of η is defined by

sup
η
L∗(η|x) = sup

θ:τ(θ)=η
L(θ|x)

The value of η̂ which maximized L∗(η|x) is called the MLE of η:

sup
η
L∗(η|x) = L∗(η̂|x)
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Theorem 20.1 (Invariance property of MLEs) — If θ̂ is the MLE of θ, then for any
function τ(θ), the MLE of τ(θ) is τ(θ̂).

Proof. Let η̂ denote the value that maximizes L∗(η|x). Our objective is to show that
L∗(η|x) = L∗(τ(θ̂)|x). Since,

L∗(η̂|x) = sup
η

sup
θ:τ(θ)=η

L(θ|x)

= sup
θ
L(θ|x)

= L(θ̂|x)

We can see that using this theorem that MLE of θ2 is X̄2, and for a more complicated
function such as

√
p(1− p), where p is the binomial probability, the MLE is

√
p̂(1− p̂).

§20.2 Bayes Estimators

Denote the prior distribution π(θ) and the sampling distribution by f(x|θ), then the
posterior distribution is given by

π(θ|x) =
f(x|θ)π(θ)

m(x)
(Bayes’ Rule!)

where m(x) is the marginal distribution of X, that is

m(x) =

∫
f(x|θ)π(θ)dθ

Definition 20.2 Let F be a class of distributions for X. A class Π of prior distribu-
tions is a conjugate family for F if the posterior distribution is in the class Π for
all f ∈ F , i.e,

π(θ|x) for all π ∈ Π, f ∈ F

The Bayes estimator of θ is defined as the expected value of θ under the posterior
distribution, which is the weighted average value of θ given the new evidence we have
after observing the sample;

θ̂B(x) =

∫
θπ(θ|x)dθ

Example 20.3 (Conjugate families) — We showed that

π(θ|x) = Beta

(
α+

n∑
i=1

xi, β + n−
n∑
i=1

xi

)

thus, we can clearly see that the beta family is a conjugate for the Bernoulli family.
In addition to that we showed the normal family is conjugate to itself since

π(θ|x) = Normal

(
nτ2x̄+ σ2µ

nτ2 + σ2
,

σ2τ2

σ2 + nτ2

)
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§21 December 1, 2021

§21.1 Methods of evaluating estimators

The general topic of evaluating statistical procedures is part of a branch of statistics called
decision theory. In this section we look at some basic criteria for evaluating estimators.

Definition 21.1 (Mean square error (MSE)) The mean square error of an estimator
W of a parameter θ is the function of θ defined by Eθ(W − θ)2.

Definition 21.2 (Bias) The bias of an estimator T for a parameter θ is defined by

Biasθ(T ) = EθT − θ

Note: MSE incorporates two components, one measuring the variability and the other
measuring bias.

MSEθ = Varθ(T ) + (Biasθ(T ))2

Example 21.3 — Let X − 1, ..., Xn be iid n(µ, σ2). The statistics X̄ and §2 are
both biased estimators since

EX̄ = µ ,ES2 = σ2, for all µ and σ.

The MSEs of the estimators are given by

E(X̄ − µ)2 = VarX̄ =
σ

n
.

E(S2σ2)2 = VarS2

§21.2 Best unbiased estimators (UMVUE)

If we compare estimators based on MSE, there is no single ”best MSE” estimator. The
reason is that the class of all estimators is too large of a class. Therefore by placing
certian restrictions on our estimators, we can limit the class of estimators.

Definition 21.4 (Best unbiased estimator) An estimator W ∗ is the best unbiased
estimator of τ(θ) if it satisfies EθW ∗ = τ(θ) for all θ and, for any for any other
estimator W with EθW = τ(θ), we have VarθW ∗ ≤ VarθW for all θ. W ∗ is also
called a uniform minimum variance unbiased estimator (UMVUE)
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Theorem 21.5 (Cramèr-Rao Lower Bound) — Let X1, ..., Xn be a random variables
with joint pdf f(x|θ). Let W = W (X) be a finite variance estimator satisfying the
following conditio:

d

dθ

∫
W (x)f(x|θ)dx =

∫
W (x)

d

dθ
f(x|θ)dx.

Then

VarθW ≥

(
d

dθ
EθW

)2

In(θ)
= CR-Lower-Bound

Where

In(θ) = Eθ
(
d

dθ
logf(X|θ)

)2

= Fisher information

Note:

• If W is an unbiased estimator of θ then d
dθEθW = 1, and thus the CR-Lower-Bound

becomes
1

In(θ)
.

• Generally the condtion in the theorem does not hold if the support of f(x|θ)
depends on θ.

• If X1, ..., Xn are i.i.d with pdf f(x|θ), then

In(θ) = nI1(θ)

• X1, ..., Xn are i.i.d with pdf f(x|θ) belonging to an exponential family, then the
fist condition in the theorem is satisfied and

I1(θ) = −Eθ
(
d2

dθ2
logf(X|θ)

)

§22 December 6, 2021

§22.1 methods of evaluating estimators (continued)

Corollary 22.1 (Attainment of CR-Lower-Bound)

If X1, ..., Xn is a random sample from f(x|θ) and W is an bisased estimator of τ(θ)
such that condition (1) of Cramèr-Rao theorem is satisfied. Then W attains the
Cramèr-Rao lower bound if and only if there exists a fucntion a(θ such that

a(θ)[W (x)− τ(θ)] =
d

dθ
logf(x|θ)

§22.2 Sufficiency and Unbiasedness
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Theorem 22.2 (Rao-Blackwell) — Let W be any unbiased estimator of τ(θ), and
let T be a sufficient statistic for θ. Define φ(T ) = E(W |T ). Then Eθφ(T ) = τ(θ)
and Varθφ(T ) ≤ VarθW for all θ. That is φ(T ) = E(W |T ) is a uniformly better
unbiased estimator of τ(θ).

Theorem 22.3 — If W is the best unbiased estimator of τ(θ), then W is unique.

§23 December 8
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